

CYCLES IN WEIGHTED GRAPHS

J. A. BONDY and GENGHUA FAN

Received August 17, 1988 Revised August 2, 1990

A weighted graph is one in which each edge e is assigned a nonnegative number w(e), called the weight of e. The weight w(G) of a weighted graph G is the sum of the weights of its edges. In this paper, we prove, as conjectured in [2], that every 2-edge-connected weighted graph on n vertices contains a cycle of weight at least 2w(G)/(n-1). Furthermore, we completely characterize the 2-edge-connected weighted graphs on n vertices that contain no cycle of weight more than 2w(G)/(n-1). This generalizes, to weighted graphs, a classical result of Erdős and Gallai [4].

1. Introduction

Let G = (V, E) be a simple graph (without loops or multiple edges). G is called a weighted graph if each edge e is assigned a nonnegative number w(e), called the weight of e; in case we want to distinguish the underlying graph, we write $w_G(e)$ instead of w(e). For any subgraph H of G, V(H) and E(H) denote the sets of vertices and edges of H, respectively. The weight of H is defined by

$$w(H) = \sum_{e \in E(H)} w(e).$$

A cycle (path) is called an optimal cycle (path) if it is a cycle (path) of maximum weight. For a vertex v, the weighted degree w(v) of v is the sum of the weights of the edges incident with v. The neighbour set of v is denoted by N(v) and the degree of v by d(v). An unweighted graph can be regarded as a weighted graph in which each edge e is assigned weight w(e) = 1. Thus, in an unweighted graph, w(v) is simply the degree of v. A (u,v)-path is a path connecting the two vertices u and v. A set v of vertices of v is called a vertex cut of v if v if v if v is a graph is separable if it has a 1-vertex cut; otherwise it is nonseparable. It follows from the definitions that every 2-connected graph is nonseparable, and that every nonseparable graph on at least three vertices is 2-connected.

Throughout the paper, we exclude the trivial case in which each edge is of zero weight. The following two conjectures were proposed in [2].

Conjecture 1.1. Let G be a weighted graph on n vertices. Then G contains a path of weight at least 2w(G)/n.

Conjecture 1.2. Let G be a 2-edge-connected weighted graph on n vertices. Then G contains a cycle of weight at least 2w(G)/(n-1).

It was shown in [2] that Conjecture 1.2 implies Conjecture 1.1. Recently, Frieze, McDiarmid, and Reed [5] proved that Conjecture 1.1 is true. In this paper, we prove Conjecture 1.2, thereby generalizing, to weighted graphs, a classical result of Erdős and Gallai [4]. Thus, we prove

Theorem 1.3. Let G be a 2-edge-connected weighted graph on n vertices. Then G contains a cycle of weight at least 2w(G)/(n-1).

Furthermore, we completely characterize the 2-edge-connected weighted graphs on n vertices that contain no cycle of weight more than 2w(G)/(n-1). Our characterization is based on the notation of a tritree.

Definition 1.4. A spanning tree T of a graph G is called a *tritree* if every fundamental cycle of T in G is a triangle.

Definition 1.5. Let G be a weighted graph and \mathbf{H} a set of subgraphs of G (not necessarily distinct). If there is an assignment of a positive real number α_H to each $H \in \mathbf{H}$ such that, for every $e \in E(G)$,

$$w(e) = \sum \{\alpha_H : e \in H \in \mathbf{H}\},\$$

then we say that G is a weighted union of the members of \mathbf{H} , and write

$$G = \sum_{H \in \mathbf{H}} \alpha_H H.$$

Definition 1.6. A 2-edge-connected weighted graph G on n vertices is cycle-extremal if its optimal cycles are of weight precisely 2w(G)/(n-1).

We shall prove

Theorem 1.7. A 2-edge-connected weighted graph is cycle-extremal if and only if it is a weighted union of tritrees.

Theorems 1.3 and 1.7 are valid for weighted complete graphs ([2], Theorem 6). We quote the result here, since it will be needed in the sequel.

Theorem 1.8. Let G be a weighted complete graph on n vertices, where $n \geq 3$. Then the maximum weight of a cycle of G is at least 2w(G)/(n-1), with equality if and only if $G = \sum_{T \in \mathbf{T}} \alpha_T T$, where **T** is the set of spanning stars of G.

The following result was also proved in [2]; it will be used later.

Theorem 1.9. Let G be a 2-connected weighted graph and d a real number. Let x and y be two distinct vertices of G. If $w(v) \ge d$ for all $v \in V(G) \setminus \{x, y\}$, then G contains an (x, y)-path of weight at least d.

To conclude this section, we give one more definition and a lemma.

Definition 1.10. Let G be a weighted graph and $e \in E(G)$. Define G_e to be the weighted graph obtained from G by contracting the edge e and, for each pair of multiple edges in the resulting graph, deleting the edge of smaller weight (or either, if they have equal weight).

Lemma 1.11. Let G be a 2-connected weighted graph and $x \in V(G)$. If |V(G)| > 3, then there is $y \in N(x)$ such that G_{xy} is 2-edge-connected.

Proof. Let $y \in N(x)$. If G_{xy} is not 2-edge-connected, then, since G is 2-connected, there must be $z \in N(x) \setminus \{y\}$ such that d(z) = 2. Then G_{xz} is 2-edge-connected.

2. Proof of Theorem 1.3

Lemma 2.1. Let G be a 2-connected weighted graph and P an optimal path in G, with ends x and y. Then there is a cycle C in G such that

$$w(C) > w(P)$$
 or $w(C) \ge w(x) + w(y)$.

Proof. Let

$$P = v_0 v_1 \dots v_l,$$

where $v_0 = x$ and $v_l = y$, and define

$$S = \{v_i : xv_i \in E\} \text{ and } T = \{v_i : v_{i-1}y \in E\}.$$

Note that, by optimality of P,

(2.1)
$$w(v_{i-1}v_i) \ge w(xv_i), v_i \in S \text{ and } w(v_{i-1}v_i) \ge w(v_{i-1}y), v_i \in T.$$

Case 1: $S \cap T \neq \emptyset$.

If $y \in S \cap T$ and w(xy) > 0, the cycle C = Pyx has weight

$$w(C) = w(P) + w(xy) > w(P).$$

Otherwise, for $v_i \in S \cap T$, define

$$C_i = v_0 v_1 \dots v_{i-1} v_l v_{l-1} \dots v_1 v_0.$$

Then the cycles C_i together cover the edges $v_{i-1}v_i$, $v_i \notin S \cap T$, $|S \cap T|$ times, the edges $v_{i-1}v_i$, $v_i \in S \cap T$, $|S \cap T| - 1$ times, and the edges xv_i and $v_{i-1}y$, $v_i \in S \cap T$, once. Therefore,

$$\sum \{w(C_i) : v_i \in S \cap T\} = \\ (|S \cap T| - 1)w(P) + \sum \{w(v_{i-1}v_i) : v_i \notin S \cap T\} + \sum \{w(xv_i) + w(v_{i-1}y) : v_i \in S \cap T\}.$$

Using (2.1), it follows that

$$\begin{split} & \sum \{w(C_i) : v_i \in S \cap T\} - (|S \cap T| - 1)w(P) \geq \\ & \sum \{w(v_{i-1}v_i) : v_i \in S \setminus T\} + \sum \{w(v_{i-1}v_i) : v_i \in T \setminus S\} \\ & \quad + \sum \{w(xv_i) : v_i \in S \cap T\} + \sum \{w(v_{i-1}y) : v_i \in S \cap T\} \\ & \geq \sum \{w(xv_i) : v_i \in S\} + \sum \{w(v_{i-1}y) : v_i \in T\} \\ & = w(x) + w(y). \end{split}$$

Thus, if C is the cycle C_i of maximum weight, C has the required property. Case 2: $S \cap T = \emptyset$.

Following Bondy and Locke [3; p.112], we define a vine on P to be a set $\mathbf{Q} = \{Q_j : 1 \leq j \leq m\}$ of internally-disjoint paths in G such that

- (1) $P \cap Q_j = \{a_j, b_j\}, 1 \leq j \leq m;$
- (2) $x = a_1 < a_2 < b_1 \le a_3 < b_2 \le a_4 < \ldots \le a_m < b_{m-1} < b_m = y$. where a_j and b_j are the ends of Q_j and < denotes precedence on P. Since G is 2-connected, it follows easily that there is a vine \mathbf{Q} on P. We choose \mathbf{Q} so that
- (i) m is as smalls as possible;
- (ii) subject to (i), $\left|\bigcup_{j=1}^{m-1} V_j\right|$ is as small as possible, where V_j denotes the set of internal vertices of the segment $P[a_{j+1},b_j]$ of $P,\,1\leq j\leq m-1$. We claim that the cycle

$$C = P \cup \left(\bigcup_{j=1}^{m} Q_j\right) - \left(\bigcup_{j=1}^{m-1} V_j\right)$$

has the required property. Denote the vertex following a_m on P by a_m^+ . By the choice of \mathbb{Q} , the assumption that $S \cap T = \emptyset$, and (2.1),

$$\begin{split} &w(C) = \sum \{w(v_{i-1}v_i) : v_i \notin V_j \cup \{b_j\}, \ 1 \leq j \leq m-1\} + \sum \{w(Q_j) : 1 \leq j \leq m\} \\ &\geq \sum \{w(v_{i-1}v_i) : v_i \in S \setminus \{b_1\}\} + \sum \{w(v_{i-1}v_i) : v_i \in T \setminus \{a_m^+\}\} + w(xb_1) + w(a_my) \\ &\geq \sum \{w(xv_i) : v_i \in S \setminus \{b_1\}\} + \sum \{w(v_{i-1}y) : v_i \in T \setminus \{a_m^+\}\} + w(xb_1) + w(a_my) \\ &\geq \sum \{w(xv_i) : v_i \in S\} + \sum \{w(v_{i-1}y) : v_i \in T\} \\ &= w(x) + w(y). \end{split}$$

This completes the proof of the lemma.

Proof of Theorem 1.3. We apply induction on n, and then on $\binom{n}{2} - |E(G)|$. If n = 3 or $|E(G)| = \binom{n}{2}$, the result follows from Theorem 1.8. Suppose now that n > 3, $|E(G)| > \binom{n}{2}$ and the result holds for all 2-edge-connected graphs G' with |V(G')| < n or with |V(G')| = n and |E(G')| > |E(G)|.

If G is separable, let $G = G_1 \cup G_2$, where $|V(G_1) \cap V(G_2)| = 1$. Set $n_i = |V(G_i)|$, i = 1, 2. By the induction hypothesis, G_i contains a cycle of weight at least $2w(G_i)/(n_i-1)$, i = 1, 2. Therefore, if C is an optimal cycle of G,

$$w(C) \ge w(C_i) \ge \frac{2w(G_i)}{n_i - 1}, \quad i = 1, 2.$$

Hence,

$$2w(G) = 2w(G_1) + 2w(G_2) \le (n_1 - 1)w(C) + (n_2 - 1)w(C) = (n - 1)w(C),$$

which gives $w(C) \geq 2w(G)/(n-1)$. If there is $x \in V(G)$ such that $w(x) \leq w(G)(n-1)$, then, by Lemma 1.11, there is $y \in N(x)$ such that G_{xy} is 2-edge-connected. Note that

$$w(G_{xy}) \ge w(G) - w(x) \ge \frac{n-2}{n-1}w(G).$$

By the induction hypothesis, G_{xy} contains a cycle C' of weight

$$w(C') \ge \frac{2w(G_{xy})}{n-2} \ge \frac{2w(G)}{n-1}.$$

However, either C' is a cycle in G or it can be extended to a cycle in G. Therefore, we may assume that G is 2-connected and that

(2.2)
$$w(v) > \frac{w(G)}{n-1} \quad \text{for every } v \in V(G).$$

Since G is not complete, let $xy \notin E(G)$. Add xy to G with zero weight and let G' denote the resulting weighted graph. By the induction hypothesis, G' contains a cycle C' of weight at least 2w(G')/(n-1) = 2w(G)/(n-1). If $xy \notin C'$, then C' is also a cycle of G, which completes the proof. Suppose that $xy \in C$. Since w(xy) = 0, the path C - xy in G is of weight at least 2w(G)/(n-1). Let P be an optimal path in G, so $w(P) \geq 2w(G)/(n-1)$. It follows from Lemma 2.1, using (2.2), that G contains a cycle of weight more than 2w(G)/(n-1). This completes the proof of Theorem 1.3.

3. Results on Tritrees

In this section, we give some results on tritrees. They will be needed in the proof of Theorem 1.7. The first two propositions were proved in [1].

Proposition 3.1. Let T be a tritree of a graph G. Then any cycle of G contains at most two edges of T.

Proposition 3.2. Let G be a graph with no 2-vertex cut. Then each tritree of G is a spanning start.

Proposition 3.3. Let G be a weighted graph and G' a weighted graph obtained by adding to G edges of weight zero. If $G' = \sum_{T \in \mathbf{T}} \alpha_T T$ for some set T of tritrees of G',

then T is also a set of tritrees of G and $G = \sum_{T \in T} \alpha_T T$.

Proof. Since α_T is positive and the new edges in G' have zero weight, none of the new edges belongs to any tritree in **T**. Hence, each tritree in **T** is also a tritree of G, and $G = \sum_{T \in T} \alpha_T T$.

Proposition 3.4. Let G be a weighted graph on n vertices. If $G = \sum_{T \in \mathbf{T}} \alpha_T T$ for some set **T** of tritrees of G, then

$$\sum_{T \in T} \alpha_T = \frac{w(G)}{n-1}.$$

Proof. By the definition,

$$w(G) = \sum_{T \in \mathbf{T}} \alpha_T |E(T)| = \sum_{T \in \mathbf{T}} \alpha_T (n-1) = (n-1) \sum_{T \in \mathbf{T}} \alpha_T,$$

which gives the required equality.

Proposition 3.5. Let G be a weighted graph on n vertices. If $G = \sum_{T \in \mathbf{T}} \alpha_T T$ for some set **T** of tritrees of G, then, for any $e \in E(G)$,

$$w(e) \le \frac{w(G)}{n-1},$$

with equality if and only if every tritree in T contains e.

Proof. Let

$$\mathbf{T}' = \{T \in \mathbf{T} : T \text{ contains } e\}.$$

Then, using Proposition 3.4, we have

$$w(e) = \sum_{T \in \mathbf{T}'} \alpha_T \le \sum_{T \in \mathbf{T}} \alpha_T = \frac{w(G)}{n-1},$$

with equality if and only if T' = T as required.

Proposition 3.6. Let G be a weighted graph on n vertices and C an optimal cycle in G. If $G = \sum_{T \in \mathbf{T}} \alpha_T T$ for some set **T** of tritrees of G, then $w(C) \leq 2w(G)/(n-1)$, with equality if and only if $|E(C) \cap E(T)| = 2$ for every $T \in \mathbf{T}$.

Proof. Du Droposition 2.1. Countains at most two edges of T. for any T. C.

Proof. By Proposition 3.1, C contains at most two edges of T, for any $T \in \mathbf{T}$. Thus, using Proposition 3.4,

$$w(C) \le \sum_{T \in \mathbf{T}} 2\alpha_T = 2 \sum_{T \in \mathbf{T}} \alpha_T = \frac{2w(G)}{n-1},$$

with equality if and only if $|E(C) \cap E(T)| = 2$ for every $T \in \mathbb{T}$, as required.

4. Cycle-Extremal Graphs

Proposition 4.1. If G is a cycle-extremal graph, then $w(v) \geq w(G)/(n-1)$ for all $v \in V(G)$.

Proof. Let $v \in V(G)$. If w(v) < w(G)/(n-1), by Lemma 2.1, there is $y \in N(v)$ such that G_{vy} is 2-edge-connected, where

$$w(G_{vy}) \ge w(G) - w(y) > \frac{(n-2)w(G)}{n-1}.$$

By Theorem 1.3, G_{vy} has a cycle C' of weight

$$w(C') \ge \frac{2w(G_{vy})}{n-2} > \frac{2w(G)}{n-1}.$$

But, either C' is a cycle in G or it can be extended to a cycle in G. This contradicts the fact that G is cycle-extremal. Therefore, $w(v) \ge w(G)/(n-1)$ for all $v \in V(G)$.

Definition 4.2. Let G_1 and G_2 be two weighted graphs such that $|V(G_1) \cap V(G_2)| = 1$. Set $n_i = |V(G_i)|$, i = 1, 2. If $w(G_1)/(n_1 - 1) = w(G_2)/(n_2 - 1)$, then $G_1 \cup G_2$ is called the *1-sum* of G_1 and G_2 .

Proposition 4.3. Let G be a separable cycle-extremal graph. Then G is a 1-sum of two cycle-extremal graphs.

Proof. Since G is separable, let $G = G_1 \cup G_2$, where $|V(G_1) \cap V(G_2)| = 1$. Set $n_i = |V(G_i)|$, i = 1, 2. We prove that $w(G_1)/(n_1 - 1) = w(G_2)/(n_2 - 1)$ and that G_i is cycle-extremal, i = 1, 2. Let C be an optimal cycle in G and C_i an optimal cycle in G_i , i = 1, 2. Since G is cycle-extremal,

$$2w(G) = (n-1)w(C) = (n_1-1)w(C) + (n_2-1)w(C) \ge (n_1-1)w(C_1) + (n_2-1)w(C_2).$$

By Theorem 1.3, $(n_i - 1)w(C_i) \ge 2w(G_i)$, i = 1, 2, and so

$$2w(G) \ge 2w(G_1) + 2w(G_2) = 2w(G).$$

Thus, the above inequalities are all equalities, and

$$\frac{2w(G_1)}{n_1-1}=w(C_1)=w(C)=w(C_2)=\frac{2w(G_2)}{n_2-1}.$$

This completes the proof of Proposition 4.3.

Proposition 4.4. Let G be a 2-connected cycle-extremal graph on n vertices. Then

- (i) each edge of G lies in an optimal cycle, and
- (ii) any two nonadjacent vertices are connected by a path of weight at least 2w(G)/(n-1).

Proof. (i) Let $e \in E(G)$. Replace w(e) by $w(e) + \epsilon$. By Theorem 1.3, the resulting weighted graph G, has a cycle C_{ϵ} of weight

$$w(C_{\epsilon}) \geq \frac{2w(G_{\epsilon})}{n-1} = \frac{2w(G)}{n-1} + \frac{2\epsilon}{n-1}.$$

Since G has no cycle of weight more than 2w(G)/(n-1), C_{ϵ} must pass through e. Letting $\epsilon \to 0$, and noting that the number of cycles through e is finite, we deduce that some optimal cycle of G must pass through e.

(ii) Let $uv \notin E(G)$. Join u and v by an edge e of weight ϵ , and denote the resulting graph by G_{ϵ} . The above argument now shows that u and v are connected in G by a path of weight at least 2w(G)/(n-1).

Proposition 4.5. Let G be a 2-connected cycle-extremal graph of positive weight with a 2-vertex cut $\{x,y\}$. Then $xy \in E(G)$ and w(xy) = w(G)/(n-1).

Proof. Let $G = H_1 \cup H_2$, where $V(H_1) \cap V(H_2) = \{x, y\}$ and $E(H_1) \cup E(H_2) = E(G) \setminus \{xy\}$. So

$$(4.1) w(H_1) + w(H_2) = w(G) - w(xy),$$

where w(xy) = 0 if $xy \notin E(G)$. Let $n_i = |V(H_i)|$ and P_i an (x, y)-path of maximum weight in H_i , i = 1, 2. Since $H_i + xy$ is 2-connected and, by Proposition 4.1, $w(v) \ge w(G)/(n-1)$ for all $v \in V(H_i) \setminus \{x,y\}$, i = 1, 2, it follows from Theorem 1.9 that

(4.2)
$$w(P_i) \ge \frac{w(G)}{n-1}, \quad i = 1, 2.$$

Put $G_i = H_i + xy$ with $w_G(xy) = w(P_{3-i}), i = 1, 2$. So

$$w(G_i) = w(H_i) + w(P_{3-i}), \quad i = 1, 2.$$

Let C be an optimal cycle in G and C_i an optimal cycle in G_i , i = 1, 2. By Theorem 1.3,

$$(4.3) (n_i - 1)w(C_i) \ge 2w(G_i) = 2w(H_i) + 2w(P_{3-i}), \quad i = 1, 2.$$

Since either C_i is a cycle in G or it can be converted to a cycle in G by replacing xy with P_{3-i} , we have

$$(4.4) w(C) > w(C_i), i = 1, 2.$$

Thus,

$$nw(C) = (n_1 - 1)w(C) + (n_2 - 1)w(C) \ge (n_1 - 1)w(C_1) + (n_2 - 1)w(C_2).$$

By (4.3) and (4.1),

$$nw(C) \geq 2(w(H_1) + w(H_2) + w(P_1) + w(P_2)) = 2(w(G) - w(xy) + w(P_1) + w(P_2)).$$

Hence,

$$w(xy) \ge w(G) + w(P_1) + w(P_2) - \frac{nw(C)}{2}$$
.

Using (4.2), and noting that w(C) = 2w(G)/(n-1), we have

$$(4.5) w(xy) \ge \frac{w(G)}{n-1}.$$

This implies, since w(G) > 0, that $xy \in E(G)$. Now, $P_1 \cup \{x,y\}$ is a cycle in G, which gives that

$$w(P_1) + w(xy) \le w(C) = \frac{2w(G)}{n-1}.$$

This together with (4.2) and (4.5) implies that w(xy) = w(G)/(n-1), and completes the proof of Proposition 4.5.

Definition 4.6. Let G_1 and G_2 be two nonseparable weighted graphs such that $V(G_1) \cap V(G_2) = \{x, y\}$ and $E(G_1) \cap E(G_2) = \{xy\}$. If

$$\frac{w(G_1)}{n_1 - 1} = w(xy) = \frac{w(G_2)}{n_2 - 1},$$

where $n_i = |V(G_i)|$, i = 1, 2, then $G_1 \cup G_2$ is called the 2-sum of G_1 and G_2 .

Proposition 4.7. Let G be a 2-connected cycle-extremal graph of positive weight with a 2-vertex cut $\{x,y\}$. Then G is a 2-sum of two cycle-extremal graphs.

Proof. Define G_i , n_i , C_i , i = 1, 2, as in the proof of Proposition 4.3. Since equalities hold in (4.3) and (4.4),

$$\frac{2w(G_1)}{n_1 - 1} = w(C_1) = w(C) = w(C_2) = \frac{2w(G_2)}{n_2 - 1}.$$

This implies that G_i is a cycle-extremal graph, i = 1, 2. Moreover, from Proposition 4.5, $xy \in E(G)$ and w(xy) = w(G)/(n-1) = w(C)/2. Hence

$$\frac{w(G_1)}{n_1 - 1} = w(xy) = \frac{w(G_2)}{n_2 - 1}.$$

Therefore, G is the 2-sum of the cycle-extremal graphs G_1 and G_2 .

5. Proof of Theorem 1.7

By Proposition 3.6 and Theorem 1.3, it suffices to prove

Theorem 5.1. If G is a cycle-extremal graph, then $G = \sum_{T \in \mathbf{T}} \alpha_T T$ for some set **T** of tritrees of G.

Proof. By induction on n, and then on $\binom{n}{2} - |E(G)|$. For n = 3 or $|E(G)| = \binom{n}{2}$, the result follows from Theorem 1.8. Suppose now that n > 3 and $|E(G)| < \binom{n}{2}$. If w(G) = 0, the result is trivially true by taking $\mathbf{T} = \emptyset$. Thus, we may assume that w(G) > 0.

If G is separable, then, by Proposition 4.3, G is a 1-sum of cycle-extremal graphs, G_1 and G_2 . By the induction hypothesis,

$$G_1 = \sum_{i=1}^{m_1} \alpha'_j T'_j$$
 and $G_2 = \sum_{k=1}^{m_2} \alpha''_k T''_k$.

By Proposition 3.4 and the definition of 1-sum,

$$G_1 = \sum_{i=1}^{m_1} \alpha'_j = \sum_{k=1}^{m_2} \alpha''_k.$$

Denote this common value by α , and let

$$\alpha_{jk} = \frac{\alpha_j' \alpha_k''}{\alpha}$$
 and $T_{jk} = T_j' \cup T_k''$, $1 \le j \le m_1$ and $1 \le k \le m_2$.

It is clear that T_{jk} is a tritree of G. We claim that

(5.1)
$$G = \sum_{j=1}^{m_1} \sum_{k=1}^{m_2} \alpha_{jk} T_{jk}.$$

Let $e \in E(G)$. We may suppose, without loss of generality, that $e \in E(G_1)$. Then

$$\begin{split} w(e) &= \sum \{\alpha'_j : e \in E(T'_j), \ 1 \leq j \leq m_1 \} \\ &= \frac{1}{\alpha} \left(\sum_{k=1}^{m_1} \alpha''_k \right) \sum \{\alpha'_j : e \in E(T'_j), \ 1 \leq j \leq m_1 \} \\ &= \sum \left\{ \frac{\alpha'_j \alpha''_k}{\alpha} : \ e \in E(T'_j \cup T''_k), \ 1 \leq j \leq m_1, \ 1 \leq k \leq m_2 \right\} \\ &= \sum \{\alpha_{jk} : e \in E(T_{jk}), \ 1 \leq j \leq m_1, \ 1 \leq k \leq m_2 \}. \end{split}$$

Therefore, (5.1) holds, as claimed.

If G is 2-connected and has a 2-vertex cut $\{x,y\}$, then, by Proposition 4.7, G is a 2-sum of cycle-extremal graphs G_1 and G_2 . By the induction hypothesis,

$$G_1 = \sum_{i=1}^{m_1} \alpha'_j T'_j$$
 and $G_2 = \sum_{k=1}^{m_2} \alpha''_k T''_k$.

By proposition 3.4 and the definition of 2-sum,

(5.2)
$$\sum_{j=1}^{m_1} \alpha'_j = w(xy) = \sum_{k=1}^{m_1} \alpha''_k,$$

xy being the common edge of G_1 and G_2 . By Proposition 3.5 and 4.5, each of the tritrees T'_j and T''_k , $1 \le j \le m_1$ and $1 \le k \le m_2$, includes the edge xy. Furthermore, since $\{x,y\}$ is a 2-vertex cut of G, $T'_j \cup T''_k$ is a tritree of G, $1 \le j \le m_1$ and $1 \le k \le m_2$. As before, denote the common value in (5.2) by α , and let

$$\alpha_{jk} = \frac{\alpha'_j \alpha''_k}{\alpha}$$
 and $T_{jk} = T'_j \cup T''_k$, $1 \le j \le m_1$, $1 \le k \le m_2$.

Then

$$G = \sum_{j=1}^{m_1} \sum_{k=1}^{m_2} \alpha_{jk} T_{jk},$$

as required by the theorem. Therefore, we may assume, noting that n > 3, that

$$G$$
 is 3-connected.

Since G is not complete, and by Proposition 4.4, the optimal paths of G are of weight at least 2w(G)/(n-1). If w(v) > w(G)/(n-1) for all $v \in V(G)$, then, by Lemma 2.1, G contains a cycle of weight more than 2w(G)/(n-1). This is impossible. Therefore, we may assume that there is a vertex $u \in V(G)$ such that $w(u) \leq w(G)/(n-1)$. This implies, by Proposition 4.1, that

$$(5.4) w(u) = \frac{w(G)}{n-1}.$$

Let G' = G - u. Then

$$w(G') = w(G) - w(u) = \frac{n-2}{n-1}w(G).$$

Now let C' be an optimal cycle in G'. Since $C' \subseteq G$,

$$w(C') \le \frac{2w(G)}{n-1}.$$

On the other hand, by (5.3), G' is 2-connected. It follows from Theorem 1.3 that

$$w(C') \ge \frac{2w(G')}{n-2} \ge \frac{2w(G)}{n-1}.$$

Consequently,

$$(5.5)$$
 G' is a 2-connected cycle-extremal graph.

Let $x, y \in N(u)$. If $xy \notin E(G)$, then, by (5.5) and Proposition 4.4(ii), x and y are connected by a path P' of weight

$$w(P') \ge \frac{2w(G')}{n-2} = \frac{2w(G)}{n-1}.$$

However, xP'yux is a cycle in G, and G has no cycle of weight more than 2w(G)/(n-1). Therefore, w(ux) = w(uy) = 0. This shows that, for all $x, y \in N(u)$,

$$(5.6) xy \notin E(G) \Longrightarrow w(ux) = w(uy) = 0.$$

Let $x, y \in N(u)$. If $xy \in E(G)$, then, by (5.5) and Proposition 4.4(i), there is an optimal cycle C' in G' passing through xy. Since G' is cycle-extremal,

$$w(C') = \frac{2w(G')}{n-2} = \frac{2w(G)}{n-1}.$$

Let C be the cycle obtained from C' by replacing the edge xy with the path xuy. Then $C \subseteq G$, and hence $w(ux) + w(uy) \le w(xy)$, for otherwise C is of weight more than 2w(G)/(n-1). Therefore, for all $x, y \in N(u)$ and $xy \in E(G)$,

$$(5.7) w(ux) + w(uy) \le w(xy).$$

Set

$$X = \{ v \in N(u) : w(uv) > 0 \}.$$

By (5.6), X induces a complete graph K in G. If |X|=2, Let C be the triangle xyux; if |X|>2, Let C be a Hamilton cycle of K. In either case, by (5.7), $w(C)\geq 2w(u)$. It follows from (5.4) that $w(C)\geq 2w(G)/(n-1)$. But, G contains no cycle of weight more than 2w(G)/(n-1). So all inequalities in (5.7) are equalities. Furthermore, if we set w(xy)=0 for $x,y\in N(u)$ and $xy\notin E(G)$, then we also have, by (5.6), that w(ux)+w(uy)=0=w(xy). Therefore,

$$(5.8) w(ux) + w(uy) = w(xy) \text{ for all } x, y \in N(u).$$

Our next goal is to prove that

(5.9)
$$G' = \sum_{T' \in \mathbf{T}'} \alpha_{T'} T',$$

where each $T' \in \mathbf{T}'$ is a spanning star of G'.

If G' has no 2-vertex cut, then (5.9) follows from the induction hypothesis and Proposition 3.2. Suppose, now, that G' has a 2-vertex cut. Let $\{x,y\}$ be a 2-vertex cut of G'. By (5.5) and Proposition 4.5, $xy \in E(G)$. Let $G' = G_1 \cup G_2$, where $V(G_1) \cap V(G_2) = \{x,y\}$ and $E(G_1) \cap E(G_2) = \{xy\}$. Choose the 2-vertex cut $\{x,y\}$ so that $|V(G_1)|$ is as small as possible. Then

(5.10) any 2-vertex cut of
$$G'$$
 is contained in $V(G_2)$.

To see this, let $\{z_1, z_2\}$ be a 2-vertex cut of G'. If $\{z_1, z_2\} \notin V(G_2)$, suppose, without loss of generality, that $z_1 \in V(G_1) \setminus \{x, y\}$. By the choice of $\{x, y\}$, it must be that $z_2 \in V(G_2) \setminus \{x, y\}$. But, $G_1 - z_1$ is a connected graph containing xy and $G_2 - z_2$ is a connected graph containing xy. Therefore, $G - \{z_1, z_2\}$ is connected. This contradiction establishes (5.10).

Since G is 3-connected, there is $z \in V(G_1) \setminus \{x,y\}$ and $zu \in E(G)$. Let H be the graph obtained from G' by adding edges of weight zero to join z with all vertices in N(u) which are not adjacent to z in G. It is clear that any cycle in H is either a cycle in G or can be converted to a cycle in G by replacing at most two edges of weight zero with two edges incident with u. This implies that no cycle in H is of weight more than

$$\frac{2w(G)}{n-1} = \frac{2w(G')}{n-2} = \frac{2w(H)}{n-2}.$$

It follows from Theorem 1.3 that H is cycle-extremal. By the induction hypothesis,

$$H = \sum_{T \in \mathbf{T}_H} \alpha_T T,$$

where \mathbf{T}_H is a set of tritrees of H. Moreover, by (5.3) and the structure of H, H has no 2-vertex cuts because any 2-vertex cut would contain z and so contradict (5.10). Therefore, by Proposition 3.2, each tritree in \mathbf{T}_H is a spanning star, and (5.9) follows from Proposition 3.3.

Recall $X=\{v\in N(u): w(uv)>0\}$. If $|X|\leq 2$, then, by (5.8) and (5.4), there is an edge $e\in E(G')$ incident with a vertex in X with w(e)=w(u)=w(G)/(n-1). By Proposition 3.5, each tritree T' in (5.9) contains the edge e, and hence T' is a star centered at a vertex in X. If |X|>2, let C be a Hamilton cycle of the graph induced by X. Then, as mentioned before, w(C)=2w(u)=2w(G)/(n-1). Consequently, by Proposition 3.6, $|E(C)\cap E(T')|=2$ for every tritree T' in (5.9). This also yields that T' is centered at a vertex in X. Therefore, setting $V(G')=\{v_1,v_2,\ldots,v_{n-1}\}$ and $X=\{v_1,v_2,\ldots,v_m\}$, we may rewrite (5.9) as

$$G' = \sum_{i=1}^{m} \alpha_i T_i',$$

where T'_i is the star tritree centered at vertex v_i , $1 \le i \le m$. Put

$$\alpha_i = 0, \quad m+1 < i < n-1.$$

Then, by Definition 1.5, for any i and j, $1 \le i < j \le n-1$,

$$(5.11) w(v_i v_j) = \alpha_i + \alpha_j,$$

where $w(v_iv_j)=0$ if $v_iv_j\notin E(G)$. By (5.3), $|N(u)|\geq 3$. Let $v_i,\,v_j,\,v_k\in N(u)$. We have

$$w(uv_i) = \frac{1}{2} \left[(w(uv_i) + w(uv_j)) + (w(uv_i) + w(uv_k)) - (w(uv_j) + w(uv_k)) \right].$$

By (5.8),

$$w(uv_i) = \frac{1}{2} \left[w(v_iv_j) + w(v_iv_k) - w(v_jv_k) \right].$$

If follows from (5.11) that

$$w(uv_i) = \frac{1}{2}[(\alpha_i + \alpha_j) + (\alpha_i + \alpha_k) - (\alpha_j + \alpha_k)] = \alpha_i.$$

Therefore, defining

$$T_i = T_i' + uv_i, \quad 1 \le i \le m,$$

we have

$$G = \sum_{i=1}^{m} \alpha_i T_i \;,$$

where T_i is a star tritree of G centered at v_i , $1 \le i \le m$. This completes the proof of Theorem 1.7.

6. Path-Extremal Graphs

Definition 6.1. A weighted graph G on n vertices is path-extremal if its optimal paths are of weight precisely 2w(G)/n.

Theorem 6.2. A weighted graph is path-extremal if and only if it is a complete graph in which all edges have the same weight.

Proof. Add a new vertex v_0 and join it to each vertex of G by an edge of weight M, where M > w(G). The resulting graph G' is 2-connected and has weight

$$w(G') = w(G) + nM.$$

Let C' be an optimal cycle in G'. Then, by Theorem 1.3,

$$w(C') \ge \frac{2w(G')}{n} = \frac{2w(G)}{n} + 2M.$$

Since M > w(G), vertex v_0 lies on C'. Let $P = C' - v_0$. Then

$$w(P) = w(C') - 2M \ge \frac{2w(G)}{n}.$$

But equality holds here because G is path-extremal. Consequently,

$$w(C') = \frac{2w(G')}{n}$$

and G' is cycle-extremal. By Theorem 1.7,

$$(6.1) G' = \sum_{i=0}^{m} \alpha_i T_i'.$$

If G' has a 2-vertex cut $\{x,y\}$, then either $x=v_0$ or $y=v_0$. Thus, by Proposition 4.5,

$$M = w(xy) = \frac{w(G')}{n} = \frac{w(G)}{n} + M,$$

and w(G)=0, a contradiction. If G' has no 2-vertex cut, then, by Proposition 3.2, T'_i is a spanning star of G', $0 \le i \le m$. Since M>w(G), there must be some T'_i centered at v_0 . We may suppose that T'_0 is the star tritree centered at v_0 . If $\alpha_0=M$, then m=0 and w(G)=0, again a contradiction. Otherwise, m=n and $\alpha_i=M-\alpha_0>0$, $1 \le i \le n$. Let $\alpha=\alpha_i$ and $T_i=T'_i-v_0v_i$, $1 \le i \le n$. It follows from (6.1) that $G=\sum_{i=1}^n \alpha T_i$, and so G is a uniformly weighted complete graph.

7. Related Problems

In this section, an unweighted graph is regarded as a weighted graph G in which w(e) = 1 for every $e \in E(G)$. Thus, Definition 1.5 is still meaningful for unweighted graphs.

Conjecture 7.1. Every 2-edge-connected graph has a collection C of cycles such that $G = \sum_{C \in \mathbf{C}} \alpha_C C$ and $\sum_{C \in \mathbf{C}} \alpha_C \le (n-1)/2$

Remark 7.2. Conjecture 7.1 implies Theorem 1.3. To see this, let C^* be an optimal cycle of G. If Conjecture 7.1 is true, then

$$w(G) = \sum_{C \in \mathbf{C}} \alpha_C w(C) \le \left(\sum_{C \in \mathbf{C}} \alpha_C\right) w(C^*) \le \frac{n-1}{2} w(C^*),$$

which yields $w(C^*) \leq 2w(G)/(n-1)$, as desired.

A cycle double cover of a graph G is a collection \mathbb{C} of cycles of G such that each edge of G appears exactly twice in \mathbb{C} . Szekeres [8] and Seymour [6] have conjectured that every 2-edge-connected graph has a cycle double cover. A stronger conjecture is the following one.

Conjecture 7.3 [1]. Every 2-edge-connected graph on n vertices has a cycle double cover C with $|C| \le n-1$.

Remark 7.4. Conjecture 7.3 is stronger than Conjecture 7.1. Suppose that G has a cycle double cover \mathbb{C} with $|\mathbb{C}| \leq n-1$. Then

$$G = \sum_{C \in \mathbf{C}} \frac{1}{2}C$$
 and $\sum_{C \in \mathbf{C}} \frac{1}{2} = \frac{|\mathbf{C}|}{2} \le \frac{n-1}{2}$.

Remark 7.5. Since submission of this paper, Seymour [7] has proved Conjecture 7.1. His proof makes use of Theorem 1.3.

References

- [1] J. A. Bondy: Trigraphs, Discrete Math. 75 (1989), 69-79.
- [2] J. A. Bondy, and G. Fan: Optimal paths and cycles in weighted graphs, Graph Theory in Memory of G. A. Dirac, Annals of Discrete Mathematics, 41 (1989), 53-70
- [3] J. A. BONDY, and S. C. LOCKE: Relative lengths of paths and cycles in 3-connected graphs, Discrete Math. 33 (1981), 111-122.
- [4] P. ERDŐS, and T. GALLAI: On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337-356.
- [5] A. FRIEZE, C. McDIARMID, and B. REED: On a conjecture of Bondy and Fan, manuscript.
- [6] P. D. SEYMOUR: Sums of circuits, Graph Theory and Related Topics (edited by J. A. Bondy and U. S. R. Murty), Academic Press, New York, San Francisco, London (1979), 341–355.
- [7] P. D. SEYMOUR: Personal communication.
- [8] G. SZEKERES: Polyhedral decompositions of cubic graphs, Bull. Austral. Math. Soc. 8 (1973), 367-387.

J. A. Bondy

Department of Combinatorics and Optimization University of Waterloo, Waterloo Ontario, Canada N2L 3G1 jabondy@watserv1.uwaterloo.ca Genghua Fan

Department of Mathematics Arizona State University Tempe, AZ 85 287 U.S.A.

atfan@asuacad.bitnet